
This is a guide on how to do a pi completely headless - no screen or keyboard attached! (requires
networking of course)

Base Headless Pi Setup
Project 1: GPS-based NTP server
Project 2 [WIP]: Pi-Hole DNS level blocker with sync and recursive DNS
Project 3 [WIP]: Lenny Troll (phone anti-scammer bot)

Headless Raspberry
Pi Server (plus
project guides)

This page describes how to get a Pi to a base level headless configuration (ie, SSH & networking
enabled, all packages up to date)

Minimum sd card size is 4GB

Used to be that you could just write the Raspbian image to a card, add the ssh file in the /boot
partition, and ssh into the pi, but the normal pi user was removed in new OS versions. Instead, the
Pi Imager tool must be used.

1. install the imaging software. On arch:

(On other OS's, the package manager is different, but the package name should be the
same or similar.)

sudo pacman -S rpi-imager

2. Plug in the SD card that will go into the pi
3. Open the "Raspberry Pi Imager" software and choose an image ("Choose OS" button -->

Raspberry Pi OS (other) --> OS Lite)
4. Hit the gear icon to change these settings:

hostname
enable ssh
username/password
wifi (if the pi has wifi)
Locale (time zone/keyboard layout)

5. Choose the SD card as the Storage device
6. Click the "Write" button

Base Headless Pi Setup

WARNING: Old method of Pi SD card setup
NO LONGER WORKS!

Install the imaging software and write the
SD card

https://www.raspberrypi.com/software/

1. Insert the SD card into the Pi
2. plug in ethernet to the Pi if not using wifi (most USB ethernet adapters are supported)
3. Apply power to the Pi
4. wait for it to come online and log in via SSH (check local DHCP server logs for Pi's IP)

1. run sudo raspi-config to finish SD card setup:
6 Advanced Options --> A1 Expand File System

2. reboot the Pi
3. update packages with sudo apt update && sudo apt upgrade

The Pi can now be used for it's intended project.

To allow login from Yubikey or other private key, public keys should be added to authorized_keys
file in the Pi user's home directory. Downloading keys requires internet connection:

1. mkdir ~/.ssh

2. curl https://github.com/your-github-username.keys > ~/.ssh/authorized_keys

3. chmod 700 ~/.ssh

4. chmod 600 ~/.ssh/authorized_keys

5. (Optional) disable password login: edit /etc/ssh/sshd_config and add/modify the password
auth lines to:

PasswordAuthentication no

PermitEmptyPasswords no

Reboot Pi after changing SSH config.

Boot the Pi and login

Post-install steps (after logging in):

Add SSH Keys

Source: Microsecond accurate NTP with a Raspberry Pi and PPS GPS

This page describes setting up a GPS module with a Pi to act as a Stratum 1 NTP server.

The GPS module I purchased is from the NEO-xM line (6M, 7M, 8M). The board looks similar to this:

Things of note: GPIO header, USB, included antenna module, and external antenna port:

Project 1: GPS-based NTP
server

Info

https://austinsnerdythings.com/2021/04/19/microsecond-accurate-ntp-with-a-raspberry-pi-and-pps-gps/
https://wiki.jank.tech/uploads/images/gallery/2023-06/Efo8dmEavuaVTCas-nmeo-8m.jpg

The GPIO header should have the pins labelled on one side of the board, preferrably in the
same order as the pins on the Pi, so the GPS board can plug directly into it.
The module can be connected to a PC via USB, but that is not covered in this guide.
The large white and tan ceramic block on the bottom of the module is a GPS receiver
antenna. It can be used, but then the module must be placed remotely from the Pi, which
can cause timing issues with the PPS line.
An external GPS antenna is recommended, which plugs into the SMA port. The on-board
antenna is disabled in this case.

PPS = Pulse Per Second. While the serial/USB data from the GPS module contains the actual time &
date information required for the NTP server, the PPS input is required to keep sub-millisecond
accuracy. the PPS output sends a signal pulse at the start of each second, +/- a few nanoseconds.
The time keeping software uses this second input to keep precise time.

1. Install packages:

('pps/gpsd' packages are for interperating GPS data, chrony is the actual NTP server)

sudo apt install pps-tools gpsd gpsd-clients gpsd-tools chrony

2. Add these lines to the end of /boot/config.txt

These lines initialise pins on the Pi's GPIO header to enable the serial port, and set the PPS
pin as an input.

the next 3 lines are for GPS & PPS signals

dtoverlay=pps-gpio,gpiopin=18

enable_uart=1

init_uart_baud=9600

3. Add this text to the end of /etc/modules to enable the PPS module:

pps-gpio

4. disable system handling of the COM port (allows the GPS software to keep control of the
port):

Check this command worked after rebooting the Pi: /dev/ttyS0 should be owned by
root:dialout and have permissions crw-rw---- .

sudo systemctl mask serial-getty@ttyS0.service

Setup:

Wire up the GPS module:

1. GPS VIN to RPi pin 2 or 4 (+5Vbus)
2. GPS GND to RPi pin 6 (GND)
3. GPS RX to RPi pin 8 (Pi TX)
4. GPS TX to RPi pin 10 (Pi RX)
5. GPS PPS to RPi pin 12 (GPIO 18)

Picture reference (all Pi's have the same header):

Note that all the required pins on the Pi header are sequential. Most GPS modules with headers are
pin-compatible with the Pi, however some swap the positions of the TX and RX pins (The 'TX' of the
GPS module must go the the 'RX' pin on the header, and vice-versa.) If the GPS is not detected
when you plug it into the header, try extending the header with jumper wires and crossing over the
TX/RX pins.

With the GPS module powered via the Pi, The on-board LED will light a solid color. The LED will start
blinking once it has a GPS lock, and will start sending GPS data (called "NMEA" data) via the serial
lines. Once the Pi has booted, check that the GPS module is working:

1. Check that the pps serice is running:

Should return the service pps_core , and sometimes other services as well, they can be
ignored.

 lsmod | grep pps

Pinout:

Check GPS functionality

https://wiki.jank.tech/uploads/images/gallery/2022-06/A1gtBqyeDxT78Iks-raspberry-pi-zero-5-1536x768.png

2. Check the PPS input for good pulses (after GPS has a lock, ie the indicator light is
blinking):

Example output:

sudo ppstest /dev/pps0

trying PPS source "/dev/pps0"

found PPS source "/dev/pps0"

ok, found 1 source(s), now start fetching data...

source 0 - assert 1655253832.999996389, sequence: 966 - clear 0.000000000, sequence:

0

source 0 - assert 1655253834.000004254, sequence: 967 - clear 0.000000000, sequence:

0

source 0 - assert 1655253835.000001120, sequence: 968 - clear 0.000000000, sequence:

0

source 0 - assert 1655253836.000000985, sequence: 969 - clear 0.000000000, sequence:

0

source 0 - assert 1655253836.999996852, sequence: 970 - clear 0.000000000, sequence:

0

source 0 - assert 1655253838.000001719, sequence: 971 - clear 0.000000000, sequence:

0

source 0 - assert 1655253839.000002586, sequence: 972 - clear 0.000000000, sequence:

0

source 0 - assert 1655253840.000001453, sequence: 973 - clear 0.000000000, sequence:

0

...etc

If there is a timout, then there is likely not a good GPS lock yet.

Enable the GPS decoder software and the NTP server:

1. Edit /etc/default/gpsd :
change GPSD_OPTIONS=”” to GPSD_OPTIONS=”-n”
change START_DAEMON="false" to START_DAEMON="true"
change DEVICES=”” to DEVICES=”/dev/ttyS0 /dev/pps0″

2. Edit /etc/chrony/chrony.conf file, add this block of code to the top:

Set up software:

'delay 0.1' describes the accuracy of the serial time source, in seconds. Larger
numbers deprioritizes the source (sources with smaller delays have higher priority).
NMEA Source needs a non-zero delay, else chrony refuses to use it. Leave this
number alone.
'offset 0.1165' adjusts the fixed offset delay, in seconds, on the NMEA source. Edit
this offset to allign GPS and PPS timing, for higher accuracy.

GPS TIME SYNC INFO

GPS reference defines and adjustments:

refclock SHM 0 delay 0.1 offset 0.1165 refid NMEA

refclock PPS /dev/pps0 refid PPS

Allow all LAN IP Ranges so NTP server is network-agnostic (can be used on any LAN):

allow 10.0.0.0/8

allow 192.168.0.0/16

allow 172.16.0.0/12

END GPS TIME SYNC INFO

Notes:

3. Due to an inconsistency with the Pi Zero, the gpsd service often starts in an "active
(disabled)" state. This can be solved by forcing the service to start later in the boot
process. Edit the "[Install]" section of the gpsd service file,
/lib/systemd/system/gpsd.service :

4. Re-enable the 'gpsd' service: sudo systemctl disable gpsd && sudo systemctl enable gpsd

[Unit]

Description=GPS (Global Positioning System) Daemon

After=sysinit.target

[Service]

Type=forking

EnvironmentFile=-/etc/default/gpsd

ExecStart=/usr/sbin/gpsd $GPSD_OPTIONS $OPTIONS $DEVICES

[Install]

WantedBy=multi-user.target

Also=gpsd.socket

add this line to force gpsd to wait until chrony starts before running:

WantedBy=chronyd.service

5. Reboot the Pi.

6. Check NMEA function: after rebooting, run the program gpsmon , it may sit on a blank
screen for up to 60 seconds, but afterwards will display a window similar to this:

This confirms that the software is decoding the GPS info properly.

7. Check Chrony is selecting GPS as a time source; run chronyc sources

Output:

More info here under the header 'Time Sources'. TLDR: 'PPS' should have a '*' next to it,
indicating it is the primary time source (may take up to 5 minutes to update the primary
source after GPS is locked), and the [bracketed] time in the 'NMEA' row should be less
than ~5msec. change the 'offset' value (step 2) in the chrony.conf file to adjust this
bracketed value, and restart chrony with the command sudo systemctl restart chrony . A
"Reach" of '377' indicates source was polled sucessfully all 8 of the last 8 tries, a higher
reach value for a source marks it as more trustworthy, and ups the source's priority.
Lower numbers mean polls have been missed, and the source is marked as less reliable.

MS Name/IP address Stratum Poll Reach LastRx Last sample

===

#- NMEA 0 4 377 15 +3794us[+3794us] +/- 470us

#* PPS 0 4 377 16 +351ns[+515ns] +/- 3000ns

^- time.cloudflare.com 3 6 377 70 -2009us[-2008us] +/- 16ms

^- smtp.us.naz.com 2 6 377 2 -26ms[-26ms] +/- 105ms

^- hc-007-ntp1.weber.edu 2 6 377 5 +3131us[+3131us] +/- 72ms

^- dns2.kcweb.net 2 6 377 6 +1296us[+1296us] +/- 88ms

https://wiki.jank.tech/uploads/images/gallery/2022-06/dUAcDKLK5jLHI3Rr-gps-monitor.png
https://chrony.tuxfamily.org/doc/4.2/chronyc.html
https://wiki.jank.tech/link/25#bkmrk-edit-%2Fetc%2Fdefault%2Fgp

1. Install ntp package on the machine
2. Edit /etc/ntp.conf and add server [pi.local.ip] true to the list of servers
3. start the ntp service (on Arch: sudo systemctl start ntpd)
4. Check the NTP sources with ntpq -p :

Check back in about 20 minutes, after which one source should have a '*' next to it to
indicate that server is the chosen server. Remove default NTP servers and restart the ntp
service if the pi is not selected. Note: true added after the pi's IP in the config indicates it
is more "trustworthy" than other sources, and is more likely to be picked.

remote refid st t when poll reach delay offset jitter

==

 *192.168.1.137 .PPS. 1 u 35 64 1 1.851 +144501 0.001

 +time.walb.tech 50.205.244.21 3 u 34 64 1 82.802 +144501 0.001

 -li1187-193.memb 132.163.96.3 2 u 30 64 1 179.522 +144501 0.001

 +time-dfw.0xt.ca 68.166.61.255 2 u 33 64 1 106.817 +144501 0.001

 +LAX.CALTICK.NET 17.253.26.253 2 u 32 64 1 118.527 +144501 0.001

5. If NTP source is registered correctly, and you are ready to use NTP, enable the ntp service
(on Arch: sudo systemctl enable ntpd)

Change the system's time server settings to the Pi's local IP address, or install your NTP sync
program of choice (one options is Dimension 4.)

Set up other machines to use the Pi as an
NTP server (Linux):

Set up other machines to use the Pi as an
NTP server (Windows):

http://www.thinkman.com/dimension4/

Sources:

1. Craft Computing Video
2. Unbound recursive DNS setup
3. gravity-sync script to sync pi-holes
4. Ultimage Guide on systemd on Raspberry Pi (reference only, nothing in this guide is

required to make pi-hole work)

Project 2 [WIP]: Pi-Hole DNS
level blocker with sync and
recursive DNS

https://www.youtube.com/watch?v=FnFtWsZ8IP0&list=FL3idOMndPi5GkNr8HTUzcrg
https://docs.pi-hole.net/guides/dns/unbound/
https://github.com/vmstan/gravity-sync
https://www.thedigitalpictureframe.com/ultimate-guide-systemd-autostart-scripts-raspberry-pi/

Sources:

1. https://lennytroll.com/
2. DIY guide highly recommends U.S. Robotics USR5637 USB Modem

Modem Requirements:
On-board harware controlled modem, "softmodems"/winmodems not supported.
Must have voice capability (TAD/TAM capability)
Another modem option: StarTech USB56KEMH2 USB Modem, uses Conexant
CX93010-21Z chipset (not verified).

Is the USB modem a serial device (eg, /dev/ttyUSB0 or /dev/ttyAMC0)? Should "just work"
with Linux.
Sending AT commands to serial modem in linux (test that the modem works before
installing Lenny)
lenny_service.txt (systemd service file) will have to be edited to point to the correct
directory housing Lenny Troll.

Project 3 [WIP]: Lenny Troll
(phone anti-scammer bot)

Check out USB info before installing lenny:

https://lennytroll.com/
https://www.amazon.com/Robotics-USR5637-Controller-Dial-Up-External/dp/B0013FDLM0
https://www.startech.com/en-us/networking-io/usb56kemh2
https://www.datasheets360.com/pdf/-7325806517416358761
https://www.datasheets360.com/pdf/-7325806517416358761
https://www.thegeekstuff.com/2013/05/modem-at-command/

